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A simple and computationally effective partitioned solution procedure was used
to solve the coupled equations of water flow in a variably-saturated dual-porosity
medium. The coupled equations were first discretized in space and time using
standard numerical solution procedures. The resulting algebraic system was
subsequently partitioned in the time domain with a staggered implicit—implicit
partitioning scheme. The partitioned time-integration procedures were carried out
sequentially for the two subsystems, and coupled by temporal extrapolation
techniques. A numerical stability and accuracy analysis demonstrated that the
partitioned solution scheme, when integrated with the midpoint rule, is
unconditionally stable and second-order accurate with only a single-pass through
the partitioned equations (i.e. without iteration between the two subsystems).
Simulation examples revealed that the solution of the single-pass scheme yields a
slightly delayed response to that of the iterative scheme.
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INTRODUCTION

Dual-porosity models have been extended and used,
with various simplifying assumptions, to simulate water
flow and solute transport in structured, variably-
saturated porous media ever since Barenblatt and
Zheltov! and Barenblatt er al’ first introduced a
conceptual double-continua approach in 1960 for
water flow in fissured groundwater systems. The dual-
porosity model approximates the physical system of a
structured medium with two distinct, but interacting,
subsystems which represent macropores and porous
blocks inherent in field soil or rock formations.
Equations which govern water flow and/or solute
transport are described separately for each subsystem
and suitably coupled to account for the exchange of
fluid and/or contaminants between the two interacting
continua. A comprehensive review of related modeling
approaches was given by Mills er al.'?

In order to simulate the preferential flow of water
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under variably saturated conditions, Gerke and van
Genuchten® recently suggested using a set of coupled
Richards equations describing transient water flow in
each of the two subsystems. The exchange of fluid
between the two subsystems was approximated by a
first-order nonlinear transfer term. While such an
integrated approach appears promising in understand-
ing the underlying processes operative in a complex
physical system, one major difficulty in using the model
as a practical tool in research or application involves the
development of accurate and computationally efficient
numerical solution schemes.®

As an alternative to the simultaneous solution
procedure used by Gerke and van Genuchten,® we
studied the possibility of using a partitioned solution
approach for solving the coupled set of equations. Such
an approach has been shown®® to have certain advan-
tages in terms of program modularity and computational
efficiency. Unfortunately, the partitioning method for
certain applications may suffer from a numerical stability
restriction, especially when the increased computational
efficiency is achieved in an ad hoc fashion.'® In order to
achieve minimal computational effort while maintaining
satisfactory numerical stability and accuracy, several
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investigators successfully applied a judiciously chosen
predictor combined with a matrix augmentation tech-
nique or other suitable modification to a variety of
coupled problems.> 213171921 gtijl the issue of devel-
oping a suitable partitioning algorithm for a particular
coupled problem of interest remains a challenge.

The objective of this study is to develop a numerical
solution method suitable for practical application of
water flow in a variably saturated dual-porosity
medium. A computationally efficient partitioned solution
procedure is presented for this purpose. The numerical
stability and accuracy of the solution procedure is
analyzed in detail. Two simulation examples are
presented to illustrate the performance of the partitioned
scheme under various conditions. Underlying con-
ceptual issues are not further addressed in this paper
since they have been discussed at length by Gerke and
van Genuchten.®?

GOVERNING EQUATIONS

The governing equations for one-dimensional Darcian
water flow in a variably saturated rigid dual-porosity
medium, under the assumptions that the pressure is
constant in the air phase and the fluid is incompressible,
are taken as®
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where the subscripts / and m denote the subsystems of
fractures (macropores) and matrix blocks (micropores),
respectively; C = 06/0h is the specific soil-water
capacity, 6 is the volumetric water content, 4 is the
soil-water pressure head, K is the hydraulic con-
ductivity, € is a volume fraction, S is a sink term, I, is
the mass exchange term for water, ¢ is time, x is the
spatial coordinate, and « is the angle between the
vertical z-axis (positive downward from the soil surface)
and the water flow direction, x, measured from z to x
and defined positive counterclockwise.

The water exchange term, T, between the two
subsystems is assumed to be®

Ty = by — hy) 2)

where o, is a first-order mass transfer coefficient for
water as follows

B
Oy = a_z TwKa (3)

where j is a coefficient related to the geometry of the

matrix blocks, a is the characteristic half-width of the
matrix block, K, is the apparent hydraulic conductivity
at the interface of the two subsystems, and -+, is an
empirical coefficient. A detailed discussion of eqns (2)
and (3) is given by Gerke and van Genuchten.’

The water retention and hydraulic conductivity
properties of both subsystems are assumed to be given
by the expressions®

es_gr

0h) =6, + ———>7 Hh<O
B =0+ o (4a)
o(h) = 0, h=0
K(h)=KK,(h) h<0
(h) = KK, (h) (4b)
K(h) =K, h>0
respectively, where
K, = S?[1 — (1 — Si/my)?
; 1= )" (40)

S, = (9 - 0,)/(98 - gr)

and where ¢; and 6, denote the saturated and residual
volumetric water content, respectively; K; and K, are
the saturated and relative hydraulic conductivity,
respectively; S, is effective saturation, «, m, and » are
constant shape parameters, and m =1 — 1/n.

NUMERICAL SOLUTION PROCEDURES

The partitioned procedure permits one, at least in
practice, to apply different spatial discretization and
time integration schemes for each subsystem depending
upon the characteristics of the physical system. How-
ever, our analysis below assumed that the two sub-
systems are discretized with identical grids in space and
integrated with the same numerical scheme in time.
Partitioned methods for coupled systems can be
formulated on two different partitioning levels, i.e.
differential and algebraic partitioning. Previous studies
(e.g. Park & Felippa'®) suggest that algebraic partition-
ing has better implementation flexibility. For algebraic
partitioning, eqns (la) and (l1b) were first semi-
discretized in space using standard Galerkin procedures;
this resulted in a set of first-order coupled ordinary
differential equations in time of the form

C 07(h . K,+E -E h,
0 C,|lh, -E  K,+E]||h,

5@
_{um} >

in which h is the discrete pressure head vector, C and K
are the capacity (or mass) and conductivity (or stiffness)
matrices, respectively, E is the interaction matrix which
contains the coupling term between the two subsystems,
and f is a vector of forcing functions which includes
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information from boundary conditions and source/sink
terms. The superscript dot denotes temporal dif-
ferentiation. Matrix C is always symmetric and
positive definite. Matrices K and E are also symmetric
and may be specified as positive definite or positive
semi-definite depending upon the problem being
considered. Detailed expressions for the above
matrices are given in the Appendix. Note that the
matrices C, K, and E are functions of the corresponding
state variable h.

One important feature of time integration for each
subsystem in (5) is the possibility of mass balance errors
often encountered in traditional finite element formula-
tions. Mass conservative schemes for the mixed and
h-based forms of the Richards equation have been
suggested by Celia e al.* and Rathfelder and Abriola,'®
respectively. For both approaches, caution was taken to
formulate the discretized form of the storage term
equivalent to its continuous differential counterpart.
Another important consideration of numerical
approximation is the stability behaviour of the applied
algorithm. Gourlay'® and Hughes'' demonstrated that
the commonly used one-step second-order accurate
trapezoidal rule (or Crank—Nicolson method) is uncon-
ditionally stable only for linear parabolic systems, but
not for nonlinear formulations such as is the case when
the Richards equation is used. These same two
authors'®!! suggested a midpoint rule which possesses
stability properties that are the same for both linear and
nonlinear cases.

Application of a generalized midpoint rule to each
subsystem of eqn (5), and evaluating the capacity

coefficients by the standard chord-slope
approximation,18 yields
Hx""' =g (6a)

where
H=A""" 4 aAB"t*
g=A1d""" + A" — (1 — a)ArB" X"
x"=[hh,] 4T =[1,] (6b)
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in which the superscript » denotes the time level,
At ="' —¢" is the time step increment, o is a
dimensionless time weighting factor, and x' and d’
are the transpose of x and d, respectively. The right-
hand side vector, g, contains previously computed
solutions only, and hence is often referred to as the
historical term. Note that for the midpoint rule, all time-
dependent parameters of a subsystem are evaluated at
the same time level. The resulting time-discrete coupled
set of algebraic system (6) is partitioned in accordance
with problem characteristics.

Various partitioning techniques were discussed in
detail by Park and Felippa.'® An appropriate partition-
ing scheme for the dual-porosity model is staggered
implicit-implicit partition. This approach partitions the
matrix B into an implicit part B; and an explicit part Bg
as

K;+E 0 0 -E

B=Bi+By = [ ~E K,,,+E} [0 0 ]

(™)
Transferring the explicit part Bg to the right-hand side
of (6a) yields

Hix"!' =g — aABL ox" !’ (8a)
where
H;=A""* + aArB{ ™ (8b)

and where x"*" is a suitable predictor extrapolated

from past solutions. The partitioning scheme is called
implicit-implicit since all diagonal entries of B remain
on the left-hand side of (8), and both subsystems hence
are approximated in an implicit way.

A wide variety of predictors can be selected based on
multi-order multi-parameter numerical extrapolation
techniques which may include derivatives of past
solutions. The type of predictor invoked will likely
influence the numerical stability of the partitioned
solution procedure.!® One obvious form of the
predictor is simply the solution at the previous time step.
Park et al. 7 demonstrated that this simple form is a stable
predictor when used with a trapezoidal rule for fluid-
structure interaction problems, while also remaining
second-order accurate.

Using the solution at the previous time step as a
simple predictor for the solution of (8), the partitioned
solution procedure of the dual-porosity model proceeds
now as follows.

(i) Predict the pressure head field of one of the
subsystems, e.g. the soil matrix subsystem, in eqn (8)

W =, ©)

(i) Solve for the pressure head field of the fracture
subsystem, i.e. hy in eqn (8a), using

[C}-o—a,i+aAt(Kf+E)n+a,i]h;+l,i+l =Atffn+a
+[C]H = (1 - a)At(K, + E)" 'y
+ (1 — ) ATE" % H, + aArE" WY (10)

where the superscript i denotes the iteration level
within the Picard iteration scheme.

(iii) Correct the pressure head field in the matrix
subsystem, i.e. h,, in eqn (8a), as follows

[C:zn+a,i+aAt(Km+E)n+a,i]h;ln+l,i+l — Atf,;,H—a
+[Chr — (1 — a)At(K,, + E)" ">},
+ (1 — )ACE" ™'} + aAtET PO (1)
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(iv) The water flux field at time n + 1 can be calculated
from the time rate of change of the water content
6" ie.

'fn+1 - ffrH—l _ (Kf+E)n+lh;+l +En+lh;ln+1
(12a)

a"nn-H — fmn+l _ (Km +E)n+lhnm+l +En+lhfn+l
(12b)

or, alternatively, simply from Darcy’s law using the
solutions obtained from steps (ii) and (iii).

The above solution procedure is a single-pass solution
scheme without iteration between the two subsystems.
Steps (ii) and (iii) may be iterated, if desired, which leads
to a predictor-independent stability condition identical
to that of the simultaneous solution scheme provided
that a sufficient number of iterations is carried out.'®
Major concerns in practical applications of coupled
field problems are the computational cost, numerical
stability, and accuracy. Considerable effort has been
devoted to searching for a stable single-pass partitioned
scheme for coupled field problems3 1215171921
the following sections we discuss the numerical stability
and accuracy of the above solution scheme as applied to
the dual-porosity flow problem.

The partitioned method results in a symmetric
tridiagonal coefficient matrix of order N, where N is
the number of degrees-of-freedom, for each subsystem.
On the other hand, the simultaneous scheme leads to a
symmetric seven-diagonal matrix of order 2N. If a
Cholesky decomposition method is used as the equation
solver, the computational cost, evaluated in terms of
the number of floating-point operations, is directly
proportional to the order and the square of the upper
(or lower) half-band width. Solving the coupled set of
equations once with one Picard iteration requires
approximately nine times more operations with the
simultaneous scheme as compared with the partitioned
scheme.

STABILITY ANALYSIS

The stability of an integration method depends on the
eigenvalues of the approximation operator. One
method'*!® of assessing numerical stability is to apply
the solution amplification technique to the homo-
geneous time-discrete model eqn (8), and to search for
nontrivial solutions of the form x"*! = yx", where ~ is
the solution amplification factor. The analysis was
simplified by introducing the transformation'*
v=(1+4+2z)/(1 —z) which maps the unit disc |y|<]1
into the negative real half-plane Re(z) <0, to which the
Routh—~Hurwitz stability criterion” can be applied.
Applying these procedures to eqn (8), and assuming a

free response of the system, leads to the following
stability-governing characteristic polynomial for the
single-pass partitioned integration scheme

detJ(z) =0 (13a)
where
J(z) =[2A""* + aAt(B; — Bg)" "¢
— (1 - a)AtB" %z + ArB (13b)

Equation (13) can be reduced to a two-degree-of-
freedom (2-dof) system of scalar equations by modal
decomposition. The resulting scalar equation for non-
linear problems is also nonlinear.'®!! An essential
property used in the reduction procedure is ortho-
gonality of the eigenvectors of the associated eigenvalue

problem
dTce =1 (14a)
PTK+E)®=A (14b)

where I is the identity matrix. The transformation
matrix ® is chosen such that the columns of & contain a
complete set of orthogonal eigenvectors, whereas A is a
diagonal matrix which stores the corresponding real and
non-negative eigenvalues A;(¢) along its ith diagonal.
The associated 2-dof scalar form of eqn (13) is

Atez — Ate ~0
2+ (2o — )AtAz + Ath, |

(15)

in which e represents a generalized physical quantity
corresponding to the exchange term. The value e is real
and non-negative. Note that A, A,, and e are all
functions of the corresponding generalized dependent
variables, and hence are functions of time. Since these
three quantities are evaluated at time (n+ o)At (i.e.
XpT, X" and €"*®), the superscripts 7 + « in eqn (15)
and all following equations are eliminated to simplify
the notation. Expanding (15) yields

2+ (20— DALN]z + Aty

t
de (Ate — 2alrte)z — Ate

@zl +az+a =0 (16a)
where
ag =12+ 2a = A1 X2+ 2o = 1)At),)]
+ (2 — 1)Ar?e?
a; =24 2a — 1)Ar Az, (16b)
+ 24 Qa - DAL, ]A, +2(1 — a)Are?
a, = Atz)\f)\m — Ar%e?

According to the Routh—Hurwitz criterion, the
characteristic polynomial (16) has a zero or negative
real part if and only if gy >0, and 4, and a, >0
The condition « > 1/2 implies that both @, and g, are
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positive, while the condition A A, >e? must be satisfied
in order for a, >0 to be valid. One may show that the
inequality (K, + E)(K,, + E) >E? in matrix form always
holds, and from this it follows that the requirement a, >0
is satisfied automatically. The single-pass partitioned
scheme (eqns (9)—(11)) is thus unconditionally stable for
azl/2.

For 0<a < 1/2, the following two restrictions, posed
by ay > 0 and @, >0, have to be satisfied simultaneously

44 (1 —2a)* AP AN, >(1 - 20)
X 28\, + 200 + At?e?]
(17a)

2810, 4+ 2000 +2(1 — a)Ar?e?
>2(1 — 2a)At* M), (17b)

Substituting (17b) into (17a) and rearranging leads to a
restriction for the step size in the time domain
4
1* < -
(1 -2a)* (A A, —e?)

(18)

Hence the partitioned solution scheme is only
conditionally stable when 0<a < 1/2.

If there is no exchange term, the dual-porosity model
would result in two independent Richards equations
which could be solved sequentially using the same time
step Atz. Equation (18) becomes then

4

(1—2a)* A A,

(19)

where X is a generalized physical quantity corresponding
to the conductivity matrix K. Equation (19) specifies
that the time step has to be chosen as a minimum of the
two restrictions

At<min|—2 2 (20)
(1=2a)Ar (1 =2a)M,

If we further assume that the two subsystems have
identical soil-hydraulic properties, eqn (19) reduces to

2

At < m (21)

which is identical to the stability requirement for linear
parabolic problems as discussed in some standard
textbooks (e.g. the book of Burnett’). Note that the
stability restriction for nonlinear equations has the same
form as that of linear problems when integrated by the

10,11

midpoint rule except that X in (21) is now a function

of time.

ACCURACY ANALYSIS

Expanding the exact solutions of // " Lk, kT, and Ay,
about time (n+ a)At by means of finite Taylor
expansions, and substituting the resulting expressions
into eqn (8) leads to

Cfn+al'l;t+a + (Kf+E)n+ahfn+a _ En+ah'r:’+a
=177+ (1 - 20)0(A1) + O(AL?)

C,’:,+aﬁ,':,+a + (Km + E)n+ah:1+a _ En+ah;+a (22)

=21 4 (1 - 2a)0(Atf) + O(AL?)

Comparing eqn (22) with eqn (5), evaluated at time
n + a, it can be shown that the local truncation errors T
for both subsystems are of the form

T = (1 —20)0(A1) + O(Ar?) (23)

Thus the numerical solutions are second-order accurate
when the midpoint rule (o = 1/2) is used.

SIMULATION EXAMPLES

Two simulation examples, each involving three different
water exchange rates I',,, will be presented to show the
accuracy and stability of the proposed single-pass
partitioned solution procedure. To facilitate comparison
with previous solutions, we assumed the same hydraulic
properties of the physical system as those employed by
Gerke and van Genuchten® (Table 1). For the first
example, we further assumed similar initial and surface
boundary conditions as invoked by Gerke and van
Genuchten.® The example considers a 40-cm-deep soil
column initially at a uniform pressure head of
—1000cm and subjected to a constant infiltration rate
of 1000cmday ! applied to the fracture pore domain.
The lower boundaries of both subsystems were assumed
to be free drainage conditions (i.e. 9h/9z =0).
Parameters defining the water transfer coefficient «,, in
eqn (3) were chosen to be (=03, 7,=04,
K, = 0-5(K,(hs) + K,(h,,)], whereas the matrix block
size, a, was left variable for different simulation
scenarios.

Figure 1 shows the simulation results for three
different rates of water exchange between the two pore

Table 1. Hydraulic parameters used in the simulations

6, 6, a (cm™) n K, (cmday™) €
Matrix 0-10526 0-5 0-005 1'5 1:0526 095
Fracture 0-0 05 2:0 2000-0 0-05
Exchange term 0-10526 05 0-005 15 0-01 —
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Pressure Head (cm) Water Transfer Rate (1/d) Water Content (matrix)
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010 ! 90 10 01111||1|11|||1|‘111J |11[|11'|11'|‘|1_1_]
2 10 : . 0.01d . 001 :,' :;
S ] ] ] A
20 g ]
§_ ] ] 0.04d ] oo
30 = .
] h 0.08d ] 0.08
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40— oo Matrix - BUAEAL
0 0025
(a) fracture
3 2 ! 0 30 01 02 03 04 05
-19 -10 -10 -10 o 1 1 l1lol 1 12|01 L L l 1 ) 11 1 l 1 1 1 l A1 1 I 11 IJ
~— T i
_‘1 —' E» __________ i
B 0.08d ] P
25— = T !
(b) 0 0.025
3 o 1 0 4 60 01 02 03 04 05
-1?11.\.!.1_1._-10 -10 -10 0 1 1 12101 1 1 lol IJ_I 1t 1 l 1 3 1 l 1 1 1 l 11 34'
01 —————— e :
1 ] 0.01d ] ; |
51 3 . a :
E 10— - 0.04d . T
£ T 'p 1 E 5
§ 15 — . P H
7 0.084d ] boo
20 - ] 5
25— - - :

(c)

Fig. 1. Distribution of the pressure head, water transfer rate, and volumetric water content at selected times for three different values
of water transfer coefficient caused by changes in the characteristic length of the matrix blocks: (a) a = 1cm, (b) a=0-1cm,
and (¢) a = 0-0316cm. Note the different scales used in the plots for the volumetric water content.

domains. The first case (Fig. 1(a)) assumed the same immediately below the soil surface in the matrix
exchange term as used by Gerke and van Genuchten® subsystem is caused by a combination of the lateral
(a=1cm). The other two cases were simulated by flux from exchange and the downward moving Darcian
decreasing the value of a such that the mass transfer flux, while no water is allowed to enter the surface of the
rate, o, increased by factors of 100, and 1000 times. As matrix subsystem. The same phenomenon was also
expected, and shown by the results in Figs 1(b) and observed when wusing the simultaneous solution
1(c), the two subsystems gradually approach an scheme.®

instantaneous equilibrium situation in which the two The three cases in Fig. 1 were simulated using the
subsystems attain the same distributions of % versus single-phase scheme, as well as a scheme which employs

depth. The positive pressure gradient found in the region iteration between the two subsystems. The computational
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Fracture Subsystem

0
x=0 (x=15cm X=25 cm ( X=35 cm
- | x=
= -200 — o
§ 20| om _
g ] -200
§ -400 — ]
£ ] -400 ]
£ 600 -600]
g ] 0
o -800 — ]
] -1000 Y
= 0.042
-1000 T [T T T T T T
0.00 0.02 0.04 0.06 0.10
0 — Matrix Subsystem
] Iterative
5 -200 - ---- Single-pass
8 : x=15cm
.8 -400 - x=25 cm
Q -
I ]
w B |
S5 -600 —
]
o
a -800
T — x=35 cm
0.069 0.071
-1000 r T T T I L T 7T ] T 1 T I T Tj

0.00 0.02

0.04 0.06 0.08 0.10
Time (day)

Fig. 2. Evolution of pressure head versus time at selected depths in both subsystems as calculated by the single-pass and iterative
schemes assuming a characteristic half-width of the matrix block of 1 cm.

efficiency was enhanced by employing in the calculation
an adaptive time-step so as to optimize the time-step
and minimize the number of Picard iterations when
solving the equation of each subsystem. The results
obtained with both schemes were found to be
indistinguishable when plotted in the figure. The
results for the case where a = 1cm (Fig. 1(a)) show
excellent agreement with results obtained by Gerke
and van Genuchten® using a simultaneous solution
scheme. This duplication of resuits verifies that the
single-pass partitioned solution procedure is stable for
the wide range of water exchange rates tested
provided that the integration is carried out with
a>21/2 in time.

Additional comparisons of the single-pass and
iterative solution results are depicted in Fig. 2. This
figure shows pressure head changes in both subsystems
at five selected depths, plotted as a function of time for
the case where @ = 1 cm. The enlarged windows in Fig. 2
show the type of deviations obtained between the two
numerical schemes. Assuming that the iterative scheme

likely approximated the exact solution somewhat better,
the single-pass scheme hence caused a slightly delayed
response of the system due to extrapolation of the
coupling term from solutions at the previous time step.
The magnitude of this delay is proportional to the value
of the water exchange rate. Fortunately, the delay
effect can be made negligibly small, even for cases
having extreme water transfer rates, by reducing the
size of the time step. Cutting the time step-size with a
single-pass scheme is usually more effective than
prolonged iteration between the two subsystems.®
The cost of reducing the time step-size for highly
nonlinear systems is generally compensated by a
reduced number of Picard iterations required for
solving each subsystem. Moreover, one may argue
that the limiting case of instantaneous or nearly-
instantaneous equilibrium is of little practical interest,
since such a case is better simulated with the standard
one-equation Richards model using appropriate field
hydraulic properties. The three simulation cases
illustrated in this example pertained to characteristic
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Pressure Head (cm) Water Transfer Rate (for a=0.2 cm) Water Content (matrix)
-1000 -800 -600 -400 -200 O 0.0 0.5 15 20 0.1 0.2 0.3 0.4 0.5
0 llllllJlLll]lllllll _‘ L1 lLlJ‘ngllll‘lI
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20 v -] ] 0oy
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4 | < — -
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z 40— — a=1cm —Ja=1cm ,
g 1 ] ] :
8 3: ] N :
50— Fracture - -q ]
1i e Matrix ] ] -
60—/ - ]
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70— a=3cm B j a=3cm —:J
1 J 3 1
Ha=3cm
aoj LI L L B B N B B _"‘I'T‘I"l"]
0.0 0.1 0.2 03 O 0025
(fracture)

(for a=1cm & 3cm)

Fig. 3. Distributions of the pressure head, water transfer rate, and volumetric water content after 0-5-h of ponding. Note the
different scales used in the plot for the corresponding curves of the water transfer rate and water content.

half-widths, a, of the matrix block of 1, 0-1, and
0-0316 cm, respectively.

The second example simulates ponded irrigation of
water into an 80-cm deep, initially dry dual-porosity
medium. The same hydraulic properties as for the
previous example were used (Table 1). We also used the
same parameters for the water transfer coefficient,
except for the matrix block size ¢ which was assumed
to be 0-2, 1, and 3cm, respectively, for three different
test cases. A prescribed pressure head of 0-3cm was
imposed at the soil surface, whereas an initially uniform
pressure head of —1000cm was assumed for both
subsystems. The lower boundary again was assumed to
be a free drainage surface.

Figure 3 depicts the simulation results for three
different water transfer rates after 0-Sh of ponding.
Nearly identical results were obtained when simulated
with the same time step size using both the single-pass
and iterative schemes. Preferential movement of water
in the fracture subsystem can be very significant when
the water transfer rate is relatively small (i.e.

a=3cm). The shape of the pressure head profile in

the matrix zone shows an abrupt change in gradient, a

feature which can be used to distinguish the contribu-

tion from either ponded infiltration or Ilateral
exchange. On the other hand, when the exchange
rate dominates (i.c. a=0-2cm), preferential flow in
the fracture zone is diminished and surface infiltration
of water into the matrix zone is embedded in the

moisture front.

CONCLUSIONS

A partitioned solution procedure, previously developed
for solving problems of coupled mechanical systems,
was applied to the solution of the coupled equations of
water flow in a variably saturated dual-porosity
medium. The solution method is shown to be stable
and second-order accurate when integrated by a
midpoint rule in time, even when only a single-pass
through the partitioned equations is made during each
time step. The proposed single-pass scheme is shown to
be computationally much more efficient than simulta-
neous solution methods, and hence more suitable for

practical applications.
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APPENDIX

Expressions for matrices in eqn (5), as given below, are
similar for both subsystems. The subscripts f (fractures)
and m (matrix blocks) hence can be added accordingly
to the following equations to represent the expressions
for the two subsystems.

C= Z}L C;N:N; dx (A1)
K:ze:eLe A%%%dx (A2)
E=Y o Le RoN:N; dx (A3)
f= ;eLecosaK%dx — geJLe SN;dx

+ Ze: eNK (% —cos a) . (A4)

where N, are the weighing functions which in the
Galerkin approach are identical to the basis functions
Nj, L, is the length of the element e, o, is defined as
By,/d*, and K, K,, and S are the expansions of the
corresponding variable parameters within an element in
terms of the basis functions. Note that the capacity
coefficients C are evaluated with the standard chord-
slope approximation to achieve reliable mass balance
accuracy.



